目录列表

联系我们

地址:江苏省无锡市蠡湖大道1800号 江南大学未来食品科学中心5-7楼 214122

邮箱:
lsyfund@jiangnan.edu.cn

电话:+86 510 85918309

传真:+86 510 85918309


研究室微信公众号:

379. Guan, N., et al., Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects. Applied Microbiology and Biotechnology, 2015. 99: 585-600.

378. Zhuge, X., et al., Improved propionic acid production with metabolically engineered Propionibacterium jensenii by an oxidoreduction potential-shift control strategy. Bioresource Technology, 2015. 175: 606-612.

377. Zhang, J., et al., Protection of lyophilized milk starter Lactobacillus casei Zhang by glutathione. Journal of Dairy Science, 2015, TBC:1–7

376. Zhu, Y., et al., An optimal glucose feeding strategy integrated with step-wise regulation of the dissolved oxygen level improves N-acetylglucosamine production in recombinant Bacillus subtilis.

Bioresource Technology, 2015. 177: 387-392.

375. Liu, L., et al., Improved production of propionic acid via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae in Propionibacterium jensenii. Applied and Environmental Microbiology, 2015. 81: 2256-2264.

374. Liu. Y., et al., Toward metabolic engineering in the context of systems biology and synthetic biology: advances and prospects. Applied Microbiology and Biotechnology. 2015. 99: 1109-1118.

373. Guan. N., et al., Comparative metabolomics analysis of the key metabolic nodes in propionic acid synthesis in Propionibacterium acidipropionici. Metabolomics, 2015. 11: 1106-1116.

372. Yang, S., et al., One-step biosynthesis of α-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris. Scientific Reports, 2015. 5: 12614.

371. Hou, Y., et al., Production of phenylpyruvic acid from L-phenylalanine using an L-amino acid deaminase from Proteus mirabilis: Comparison of enzymatic and whole-cell biotransformation approaches. Applied Microbiology and Biotechnology, 2015. 99: 8391-8402.

370. Yin, X., et al., Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnology Advances, 2015. 33: 830-841.

369. Liu, S., et al., Production of novel NaN3-resistant creatine amidinohydrolase in recombinant Escherichia coli. Bioengineered, 2015, 6: 248-250.

368. Kang, Z. et al., Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes. Bioengineered, 2015, 6: 136-140.

367. Dai, J., et al., High-level production of creatine amidinohydrolase from Arthrobacter nicotianae 23710 in Escherichia coli. Applied Biochemistry and Biotechnology, 2015, 175: 2564-2573.

366. Zhang, C., et al., Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum. Journal of Industrial Microbiology and Biotechnology, 2015, 42: 787-797.

365. Yang, Y., et al., High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine. Applied Microbiology and Biotechnology, 2015, 99(1): 301-308

364. Yuan, P. et al., Enzymatic production of specifically distributed hyaluronan oligosaccharides. Carbohydrate Polymers, 2015, 129(20): 194-200

363. Zhang, J., et al., Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Scientific Reports, 2015, 5: 8584.

362. Dong, Z., et al., Codon and propeptide optimizations to improve the food-grade expression of bile salt hydrolase in Lactococcus lactis. Protein and Peptide Letters, 2015. 22(8): 727-735

361. Zhou, J., et al., Identification of membrane proteins associated with phenylpropanoids tolerance and transport in Escherichia coli BL21. Journal of Proteomics, 2015, 113: 15-28

360. Fang, Z., et al., Insight into the substrate specificity of keratinase KerSMD from Stenotrophomonas maltophilia by site-directed mutagenesis studies in S1 pocket. RSC Advances, 2015, 5: 74953–74960.

359. Gu, L., et al., Multivariate modular engineering of unfolded protein response for production of heterologous glucose oxidase in Pichia pastoris. Enzyme and Microbial Technology, 2015, 68:33-42.

358. Gu, L., et al., High-level extracellular production of glucose oxidase by recombinant Pichia pastoris using a combined strategy. Applied Biochemistry and Biotechnology, 2015. 175(3): 1-19

357. Dong, Z., et al., Periplasmic export of bile salt Hydrolase in Escherichia coli by the twin-arginine signal peptides. Applied Biochemistry and Biotechnology, 2015. 177(2): 458-471

356. Zhao, X., et al., Effects of nitrogen catabolite repression-related amino acids on the flavor of rice wine. Journal of the Institute of Brewing, 2015. 121(4): 581-588

355. Zeng, W., et al., A high-throughput screening procedure for enhancing α-ketoglutaric acid production in Yarrowia lipolytica by random mutagenesis. Process Biochemistry, 2015, 50(10): 1516-1522

354. Wu, J., et al., Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Scientific Reports, 2015, 5: 13477

353. Hu, Y., et al., Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. Journal of Industrial Microbiology and Biotechnology, 2015. 42(7): 1039-1047

352. Guo, H., et al., Identification and application of keto acids transporters in Yarrowia lipolytica. Scientific Reports, 2015, 5: 8138

351. Gazi S H, Jianghua L, One-Step Biosynthesis of a-Keto-c-Methylthiobutyric Acid from L-Methionine by an Escherichia coli Whole-Cell Biocatalyst Expressing an Engineered L-Amino Acid Deaminase from Proteus vulgaris. PLoS ONE, 2014. 9(12): p. e114291.

350. Zhuge, X., et al., Improved propionic acid production from glycerol with metabolically engineered Propionibacterium jensenii by integrating fed-batch culture with a pH-shift control strategy. Bioresour Technol, 2014. 152: p. 519-25.
349. Zhu, S., et al., Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli. Appl Environ Microbiol, 2014. 80(10): p. 3072-80.
348. Zhou, J., G. Du, and J. Chen, Novel fermentation processes for manufacturing plant natural products. Curr Opin Biotechnol, 2014. 25: p. 17-23.
347. Zhao, X., et al., Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system. Appl Environ Microbiol, 2014. 80(1): p. 392-8.
346. Zhao, S., et al., Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. J Proteomics, 2014. 101: p. 102-12.
345. Zhang, M., et al., The effects of RecO deficiency in Lactococcus lactis NZ9000 on resistance to multiple environmental stresses. J Sci Food Agric, 2014. 94(15): p. 3125-33.
344. Zhang, J.R., et al., The arginine deiminase pathway of koji bacteria is involved in ethyl carbamate precursor production in soy sauce. Fems Microbiology Letters, 2014. 358(1): p. 91-97.
343. Zhang, C., et al., Construction and application of novel feedback-resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for L-phenylalanine synthesis. FEMS Microbiol Lett, 2014. 353(1): p. 11-8.
342. Yang, Y., et al., Biochemical characterization and high-level production of oxidized polyvinyl alcohol hydrolase from Sphingopyxis sp. 113P3 expressed in methylotrophic Pichia pastoris. Bioprocess Biosyst Eng, 2014. 37(5): p. 777-82.
341. Yang, Y., et al., Structural Insights into Enzymatic Degradation of Oxidized Polyvinyl Alcohol. Chembiochem, 2014. 15(13): p. 1882-1886.
340. Yang, Y., et al., Roles of tryptophan residue and disulfide bond in the variable lid region of oxidized polyvinyl alcohol hydrolase. Biochem Biophys Res Commun, 2014. 452(3): p. 509-14.

339. Gazi S H, Jianghua L, One-Step Biosynthesis of a-Keto-c-Methylthiobutyric Acid from L-Methionine by an Escherichia coli Whole-Cell Biocatalyst Expressing an Engineered L-Amino Acid Deaminase from Proteus vulgaris. PLoS ONE, 2014. 9(12): p. e114291.

338. Mohammed Y, Lee B, et al., Development of a two-step cultivation strategy for the production of vitamin B12 by Bacillus magisterium. Microbial Cell Factories, 2014. 15: p. 13:102.

337. Yang, H., et al., Molecular engineering of industrial enzymes: recent advances and future prospects. Appl Microbiol Biotechnol, 2014. 98(1): p. 23-9.
336. Xu, Z., et al., Thermal inactivation of a recombinant lipoxygenase from Pseudomonas aeruginosa BBE in the absence and presence of additives. J Sci Food Agric, 2014. 94(9): p. 1753-7.
335. Xu, S., et al., Efficient transformation of Rhizopus delemar by electroporation of germinated spores. J Microbiol Methods, 2014. 103: p. 58-63.
334. Xu, S., et al., Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003. Microb Cell Fact, 2014. 13(1): p. 146.
333. Xu, S., et al., Self-Cloning Significantly Enhances the Production of Catalase in Bacillus subtilis WSHDZ-01. Applied Biochemistry and Biotechnology, 2014. 173(8): p. 2152-2162.
332. Wu, J., et al., Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli. PLoS One, 2014. 9(7): p. e101492.
331. Wu, J., et al., Fine-tuning of the fatty acid pathway by synthetic antisense RNA for enhanced (2S)-naringenin production from L-tyrosine in Escherichia coli. Appl Environ Microbiol, 2014.
330. Wu, J., et al., Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds. J Biotechnol, 2014. 188C: p. 72-80.
329. Lu, X.Y., et al., Enhanced thermal stability of Pseudomonas aeruginosa lipoxygenase through modification of two highly flexible regions. Applied Microbiology and Biotechnology, 2014. 98(4): p. 1663-1669.
328. Liu, Y., et al., Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab Eng, 2014. 24: p. 61-9.
327. Liu, Y., et al., Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Metab Eng, 2014. 23: p. 42-52.
326. Liu, L., et al., In silico rational design and systems engineering of disulfide bridges in the catalytic domain of an alkaline alpha-amylase from Alkalimonas amylolytica to improve thermostability. Appl Environ Microbiol, 2014. 80(3): p. 798-807.
325. Liu, B.H., et al., Functional analysis of the C-terminal propeptide of keratinase from Bacillus licheniformis BBE11-1 and its effect on the production of keratinase in Bacillus subtilis. Process Biochemistry, 2014. 49(9): p. 1538-1542.
324. Liu, B., et al., Comparative analysis of bacterial expression systems for keratinase production. Appl Biochem Biotechnol, 2014. 173(5): p. 1222-35.
323. Ling, Z., et al., Improvement of catalytic efficiency and thermostability of recombinant Streptomyces griseus trypsin by introducing artificial peptide. World J Microbiol Biotechnol, 2014. 30(6): p. 1819-27.
322. Kang, Z., et al., Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology. Appl Microbiol Biotechnol, 2014. 98(8): p. 3413-24.
321. Kang, Z., et al., Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose. Appl Biochem Biotechnol, 2014. 172(4): p. 2012-21.
320. Kang, Z., et al., Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. J Ind Microbiol Biotechnol, 2014. 41(11): p. 1599-607.
319. Jin, P., et al., High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers. Sci Rep, 2014. 4: p. 4471.
318. Jia, D., et al., High efficiency preparation and characterization of intact poly(vinyl alcohol) dehydrogenase from Sphingopyxis sp.113P3 in Escherichia coli by inclusion bodies renaturation. Appl Biochem Biotechnol, 2014. 172(5): p. 2540-51.
317. Hossain, G.S., et al., Improved production of alpha-ketoglutaric acid (alpha-KG) by a Bacillus subtilis whole-cell biocatalyst via engineering of L-amino acid deaminase and deletion of the alpha-KG utilization pathway. J Biotechnol, 2014. 187: p. 71-7.
316. Hossain, G.S., et al., L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl Microbiol Biotechnol, 2014. 98(4): p. 1507-15.
315. Hossain, G.S., et al., Bioconversion of l-glutamic acid to alpha-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. J Biotechnol, 2014. 169: p. 112-20.
314. Han, R.Z., et al., Fusion of Self-Assembling Amphipathic Oligopeptides with Cyclodextrin Glycosyltransferase Improves 2-O-D-Glucopyranosyl-L-Ascorbic Acid Synthesis with Soluble Starch as the Glycosyl Donor. Applied and Environmental Microbiology, 2014. 80(15): p. 4717-4724.
313. Han, R., et al., Recent advances in discovery, heterologous expression, and molecular engineering of cyclodextrin glycosyltransferase for versatile applications. Biotechnol Adv, 2014. 32(2): p. 415-28.
312. Guo, H., et al., Effects of pyruvate dehydrogenase subunits overexpression on the alpha-ketoglutarate production in Yarrowia lipolytica WSH-Z06. Appl Microbiol Biotechnol, 2014. 98(16): p. 7003-12.
311. Guan, N.Z., et al., Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics. Scientific Reports, 2014. 4.
310. Gu, L., et al., Multivariate modular engineering of the protein secretory pathway for production of heterologous glucose oxidase in< i> Pichia pastoris. Enzyme and microbial technology, 2015. 68: p. 33-42.
309. Gao, L., et al., Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol. Metab Eng, 2014. 24: p. 30-7.
308.  Fang, Z., et al., Cloning, heterologous expression and characterization of two keratinases from< i> Stenotrophomonas maltophilia BBE11-1. Process Biochemistry, 2014. 49(4): p. 647-654.
307. Dong, Z.X., et al., Optimisation for high cell density cultivation of Lactobacillus salivarius BBE 09-18 with response surface methodology. International Dairy Journal, 2014. 34(2): p. 230-236.
306. Deng, Z., et al., Structure-based rational design and introduction of arginines on the surface of an alkaline alpha-amylase from Alkalimonas amylolytica for improved thermostability. Appl Microbiol Biotechnol, 2014. 98(21): p. 8937-45.
305. Deng, Z., et al., Structure-based engineering of alkaline alpha-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability. Appl Microbiol Biotechnol, 2014. 98(9): p. 3997-4007.
304. Cao, W., et al., Improved catalytic efficiency of catalase from Bacillus subtilis by rational mutation of Lys114. Process Biochemistry, 2014.

Liu, S., et al., Overproduction of pro-transglutaminase from Streptomyces hygroscopicus in Yarrowia lipolytica and its biochemical characterization. BMC Biotechnology, 2015, 5:75

 

 



技术支持:信息化建设管理处

校内备案号:JW备170223

地址:江苏省无锡市蠡湖大道1800号
邮编:214122        
联系电话:+86 510 85918309        
服务邮箱:lsyfund@jiangnan.edu.cn